
Information and Software Technology 55 (2013) 1726–1740
Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
An object-oriented implementation of concurrent and hierarchical state
machines
0950-5849/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.infsof.2013.03.005

E-mail address: vs@spinke.de
Volker Spinke
Parkstraße 8, 65439 Flörsheim am Main, Germany
a r t i c l e i n f o a b s t r a c t
Article history:
Received 1 October 2012
Received in revised form 12 March 2013
Accepted 16 March 2013
Available online 27 March 2013

Keywords:
State machines
UML statecharts
State pattern
Double-dispatch
Code generation
Design pattern
Context: State machine diagrams are a powerful means to describe the behavior of reactive systems.
Unfortunately, the implementation of state machines is difficult, because state machine concepts, like
states, events and transitions, are not directly supported in commonly used programming languages.
Most of the implementation approaches known so far have one or more serious drawbacks: they are dif-
ficult to understand and maintain, lack in performance, depend on the properties of a specific program-
ming language or do not implement the more advanced state machine features like hierarchy,
concurrency or history.
Objective: This paper proposes and examines an approach to implement state machines, where both
states and events are objects. Because the reaction of the state machine depends on two objects (state
and event), a method known as double-dispatch is used to invoke the transition between the states.
The aim of this work is to explore this approach in detail.
Method: To prove the usefulness of the proposed approach, an example was implemented with the pro-
posed approach as well as with other commonly known approaches. The implementation strategies are
then compared with each other with respect to run-time, code size, maintainability and portability.
Results: The presented approach executes fast but needs slightly more memory than other approaches. It
supports hierarchy, concurrency and history, is human authorable, easy to understand and easy to mod-
ify. Because of its pure object-oriented nature depending only on inheritance and late binding, it is exten-
sible and can be implemented with a wide variety of programming languages.
Conclusion: The results show that the presented approach is a useful way to implement state machines,
even on small micro-controllers.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Finite state machines are a clear and concise way to describe the
behavior of a system reacting to external events. They are a well-
known and widely used technique to describe the dynamics of con-
trol systems, protocols or graphical user interfaces. A state ma-
chine comprises all permitted states of a system and the allowed
transitions between them. Transitions are triggered by events
and can be guarded by a condition.

To make the description even more expressive, hierarchies of
states have been introduced, which leads to hierarchical state ma-
chines. In some cases, actions are to be performed in parallel,
which leads to concurrent hierarchical state machines. The paper
of Harel [1] gives an introduction to the concepts.

The UML [2] has become the most widespread modeling lan-
guage used today. It provides a state machine diagram which is a
graphical representation of a state machine. The UML state ma-
chine diagram combines Mealy and Moore machines. Actions de-
pend on both the active state of the system as well as the
triggering event and are associated with the transition from one
state to the subsequent state, as in Mealy machines. Additionally,
it is possible to define entry and exit actions, as in Moore machines.
UML state machine diagrams also allow the hierarchical nesting of
states. With this features, UML is capable of modeling a large range
of state machines, from simple to very complex.

State machines are an important, not to say essential, way to
describe the behavior of reactive systems. They are widely used
to implement the control logic of all kinds of software – on a small
micro-controller as well as in a large server application.

Unlike classes and objects, current mainstream programming
languages, like C++, Delphi or C#, do not support state machines di-
rectly. What we are looking for, is a way to implement state ma-
chines, which is universally applicable, independent of a special
programming language, shows sufficient performance and enables
us to make use of the more advanced features like nesting, concur-
rency and history as well as the advantages of object-orientation.

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.infsof.2013.03.005&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2013.03.005
mailto:vs@spinke.de
http://dx.doi.org/10.1016/j.infsof.2013.03.005
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

V. Spinke / Information and Software Technology 55 (2013) 1726–1740 1727
In addition to this, we want an approach to support the UML
semantics.

The search for this proposal forms the outline of the paper: at
first we look at the traditional approaches and find out, that they
have some limitations that make them suboptimal for the intended
purpose. The next step is to clarify the requirements of a suitable
approach in more detail. As a result of these considerations, we
conclude, that applying the well-known object-oriented pattern
named double-dispatch to implement state machines should be
the solution we are looking for. Then we have a look at the litera-
ture to verify this.

Unfortunately, there were no papers found that describe how to
implement state machines with the double-dispatch approach.
Furthermore, there were no papers found that suggest other ap-
proaches that fulfill the requirements set before. Because of this
unexpected result, this paper was written to fill this gap.

In the later sections, we describe how to apply the double-dis-
patch approach to the implementation of state machines and com-
pare it with the traditional approaches. In order to have one
representative for each of the traditional approaches, visualSTATE
[3] (nested switch/if statements approach, state-event-table ap-
proach) and the modified approach of Niaz and Tanaka [4] (based
on the state pattern by Gamma et al. [5]) are included in the com-
parison. In addition to these, the Boost Statechart Library [6] was
chosen as a representative of language specific approaches. The
Boost Statechart Library is based on lists.

The paper ends with a conclusion and an outlook on the future
work.
2. Traditional approaches

In the past, a confusing large number of implementation pro-
posals have evolved. This makes it difficult for a user to choose
an appropriate one. At a closer look, there are many similarities,
because they basically originate from one of three traditional
approaches.
2.1. Nested switch/if statements

The most simple and straightforward approach is to nest two
switch statements using scalar variables to represent the states
and events. The outer switch statement e.g. selects between differ-
ent states and the inner one selects between the possible events in
this state. The same result can be achieved with if-statements too.
Often both are combined: the outer selection is a switch-statement
and the inner selection is done by if-statements.

This works well for small and simple state machines but gets
cumbersome and confusing very fast, as the number of states
and events grow. Besides this, the run-time heavily depends on
the way how the compiler translates the switch statement into
machine code. Switch statements can be implemented as a series
of if statements or by using a jump table. If a series of if statements
is used, the runtime is not constant but depends on the active state
and the event to be processed and degrades with the number of
cases. If a jump table is used, the implementation is similar to
the state-event-table approach, described in the next section.
2.2. State-event-table

A more sophisticated approach is to store the transition infor-
mation in a table. One dimension of the table represents all possi-
ble states, the other one all possible events. Using contiguous
numbers for both states and events as an index to the table, it is
easy to look up the action to perform.
With pointers to functions as table data, the execution time of
this approach is fast and does not depend on the size of the table.
The run-time for loading the pointer from the table is constant.
Nevertheless, this advantage is spoiled to some extend, because
in most applications, external events must be mapped to contigu-
ous numbers to access the table. This introduces a search algorithm
again, which increases the complexity.

The table approach too gets cumbersome and confusing as the
number of states and events grow. The matrix gets large, but is
usually sparse. Initialization of the table is complicated and prone
to errors if done manually. Nesting is possible, but tedious to
implement.

Automatic code generation can overcome these limitations, but
usually makes the resulting code practically impossible to read for
a human programmer. This aspect is especially important during
debugging.
2.3. State pattern

The state pattern published by Gamma et al. [5] is a well-known
object-oriented approach for coding state machines. The basic idea
is to implement each state as a separate class and each event as a
method of this state class. The invocation of a concrete method is
done by delegation and late binding.

The state machine is represented by an object which offers
methods for all supported events. The methods themselves dele-
gate a call to a local state object. Now, it is easy to change the
behavior of the state machine reacting to an event by simply
exchanging the state object. Each state object is free to implement
the event methods in a different way.

The state pattern has some nice advantages: the execution time
is constant (action execution is not taken into account), due to the
late binding. State-specific behavior is localized in a single class.
This eases debugging and maintenance.

But there is also the other side of the medal: events must be
mapped into a method call, which often requires a switch state-
ment or search algorithm again. Further more, the state pattern re-
quires some discipline from the developer and needs a lot of code
to write. Changes to the state machine can affect quite a few clas-
ses. As van Gurp and Bosch [7] outline, the disadvantages of the
state pattern mainly result from the fact, that the only concept
explicitly represented is the state. All other elements of a state ma-
chine (events, transitions, etc.) are modeled merely implicitly.

Unfortunately, the original state pattern as described in [5]
lacks some of the more advanced features of UML state machine
diagrams: it is not hierarchical nor does is tell us how to imple-
ment entry and exit actions, concurrent states or states with his-
tory. Yacoub and Ammar [8,9] present a set of patterns, that
extend the state pattern with these features. Also Niaz and Tanaka
[4] present an extension to the state pattern. Adamczyk [10] pro-
vides an anthology of 23 state machine design patterns many of
which are extensions of the state pattern too. Domínguez et al.
[11] compiled a table summarizing the features of many ap-
proaches, including those mentioned above.
3. Requirements on an alternative approach

The previous section explained the drawbacks of the traditional
approaches. But how should an alternative look like?

What we are looking for, is an approach that is first of all fully
object-oriented. All externally visible components shall be objects.
That means, not only the state machine itself shall be an object, but
also its interface to the outside world shall use objects. This leads
to the postulation that also the events must be objects. It is not
self-explanatory why we should still use enumerated numbers to

1728 V. Spinke / Information and Software Technology 55 (2013) 1726–1740
represent events. The need to call different methods of a state
machine to distinguish external events is also not practical. In
real-world systems, an external event is captured e.g. in an inter-
rupt-routine or an event handler of a window system, saved in
some kind or other and then forwarded to other parts of the system
where it is finally processed. In a program written in an object-
oriented language it is only natural to store the occurrence of an
event and any accompanying information in objects. All traditional
approaches introduce an impedance mismatch to an object-
oriented outside world: there is a transformation necessary, a
mapping to methods, table entries or scalar values.

An alternative approach shall leverage the advantages of object-
orientation also to state machines.

In an object-oriented approach events are objects. This allows
events not only to signal that something has happened, but also
to carry additional information. It allows events to be grouped to
super-classes. This enables state machines to react to a number
of events in the same way without having to define separate tran-
sitions for all derived events. The other way round, events can be
specialized by sub-classes allowing state machines to react to spe-
cific events in a special way. This is the equivalent to polymorphic
objects.

All state machines shall have a uniform interface that consists
of only one method. This method must be able to accept all events
that are possible in a system and not only those, which the state
machine reacts to.

A human reader must be able to program a state machine that is
understandable by others without the need of a code generator.
The functionality should be recoverable from the code.

Last but not least, it must allow for easy transformation of a
UML state machine diagram into code. Therefore, at least the fol-
lowing features must be supported: hierarchical (composite,
nested) states, orthogonal (concurrent) states, entry- as well as
exit-actions, guards, shallow and deep history. These are the main
components that form the expressive richness of state machines.
Other elements of the UML state machine diagram like do activi-
ties, choice points and other pseudostates can be emulated with
these basic features.

The alternative approach shall be able to process the event ob-
jects directly without transforming them to other artifacts. If the
states are modeled by objects too, the reaction of the state machine
depends on two objects: the current state of the state machine and
the triggering event. The mechanism that maps two objects to a
reaction is called double-dispatch. A double-dispatch should there-
fore be a suitable implementation strategy for state machines.
4. Related work

4.1. Tools

There are many commercial and non-commercial tools avail-
able, which are able to generate code from state machine
specifications.

A brief look at some of the marketing brochures reveals, that in
general, these tools make use of one of the traditional approaches
mentioned at the beginning (nested switch/if statements, table ap-
proach or state pattern) in some way or other, but introduce pro-
prietary variations and extensions.

A closer look at visualSTATE [3] shows, how this works: The
user enters a state chart graphically. The tool generates a set of
rules, which are stored in several tables. A runtime environment
processes these tables and calls one of the action handlers, which
are normal C-functions. VisualSTATE is also able to generate code
based on nested switch/if statements. The vendor of visualSTATE,
IAR Systems, calls this ‘‘readable code’’.
The serious drawback of many tools is, that they do not support
some of the more advanced features we are interested in for this
paper, like concurrency, hierarchy and history. Even if they can,
they do not implement UML semantics or use language features
that are non-portable to other programming languages. Sameks
C++-approach in [12] is an example of these. It can handle the ad-
vanced features but performs transition actions before exit actions.
This simplifies the implementation, but is a violation of the UML
semantics. It also heavily depends on specific language features
and is therefore hard if not impossible to transfer to other pro-
gramming languages. Also the Walkabout class presented by Pals-
berg and Jay in [13] falls in this category. Walkabout is
implemented using the reflection capabilities of Java, which are
not supported in other programing languages, like C++ e.g. That
is why such approaches were not investigated further.
4.2. Domínguez et al.

The scientific literature is full of proposals of how to implement
state machines in various programming languages and how to gen-
erate code from state machine specifications. An in-depth over-
view and comparison of 53 proposals is provided by Domínguez
et al. [11]. Instead of citing many of the papers examined by Domí-
nguez et al. here again, the interested reader is highly advised to
have a look at this extensive work.

An interesting finding of Domínguez et al. is, that the state tran-
sition process in all of the proposals they examined is based either
on a switch-statement or a state-table. Other possibilities (like lists
or double-dispatch) are not mentioned at all.
4.3. Niaz and Tanaka

Niaz and Tanaka [4] extended the state pattern in Gamma et al.
[5] with history, composite and concurrent states. So, they over-
come the limitations of the original pattern mentioned earlier.
Unfortunately, their approach is not UML compliant too. The
UML specification requires an event to be processed by the inner-
most state which defines a transition that is triggered by this event.
If an event has triggered a transition, it must not trigger any other
transitions in super states any more (except for default transitions,
of course). The event has been ‘consumed’.

In contrast to this, the approach of Niaz and Tanaka processes
every transition that is triggered by a specific event, regardless,
whether the event has already triggered a transition in a nested
state or not. This is due to the fact, that Niaz and Tanaka did not
implement any mechanism to decide whether an event has to be
processed or not, if it already has been consumed in an inner state.

The approach of Niaz and Tanaka results in fast code execution,
but is limited to the implementation of special cases of state ma-
chines only. Behavioral inheritance as described in the books by Sa-
mek [12,14] is not possible with their original approach. The
possibility to define transitions triggered by any supported event
in any state, regardless of whether the state is nested into an other
one or not, is essential.

Because this is easy to add, the author of this paper extended
the approach of Niaz and Tanaka by this feature. The state pattern
is based on delegation. The events are mapped to method calls of
the outermost state object. The outermost state object itself dele-
gates these method calls to the active state object. To make nested
states possible, the approach of Niaz and Tanaka continues this
delegation to the innermost state. In order to enable a state to de-
cide if it is allowed to process the event, simply a boolean return
value is added to the methods executing the events, which tells
the caller, whether the event has been processed or not. Now, an
outer state is able to decide, if it is allowed to process the event

V. Spinke / Information and Software Technology 55 (2013) 1726–1740 1729
or not. With this little extension, the approach of Niaz and Tanaka
is able to implement UML semantics too.
4.4. Chauvel et al.

The double-dispatch approach models states as well as events
explicitly as objects. This is a mayor difference to other patterns,
that model only states as objects, like the state pattern. If both
states and events are objects, double-dispatch can be applied to se-
lect the right behavior according to the event and the current state.
Chauvel and Jézéquel [15] just mention this briefly in their paper
but neither give any details of how to implement it nor do they
compare this approach to others.
4.5. The Boost Statechart Library

The rational of The Boost Statechart Library [6] mentions
double-dispatch as a considered but rejected implementation. It
simply states, that double-dispatch ‘‘scales badly’’. It is neither
self-explanatory nor explained in the rational why an algorithm
that merely performs two consecutive virtual function calls should
not scale. The given handcrafted example as well as the cited
Acyclic Visitor [16] pattern makes heavy use of templates, RTTI
and casts. It is probably the casts, that do not scale.

In addition to this, the GoF Visitor pattern [5] is criticized be-
cause it is necessary to recompile the whole state machine, if an
event is added. This is true, but usually no problem. In most appli-
cations, the number of events is limited and known beforehand,
because they reflect external incidents the system shall react to.
It is usually the reaction to these external triggers but not the trig-
gers themselves that change during development. If it is really nec-
essary that many developers work on a large state machine
implementation simultaneously, it is easy to break the state ma-
chine classes as well as the event classes of the approach presented
in this paper into several compilation units that can be worked on
independently. Certainly, it is still necessary to merge newly added
events into the header file of the state class later when all parts are
put together, but this is easily done with the support of current
version management tools and integrated development environ-
ments. The heavy criticism on the necessity to recompile – espe-
cially in [16] – appears exaggerated in most cases. Today, we
have development tools at hand, that support refactoring.
5. The double-dispatch approach

5.1. Key problem

The key idea of a state machine is that its reaction depends on
two parameters: the active state and a triggering event. Guarded
by a Boolean expression, both parameters determine a transition
to a subsequent state. While traversing the transition, an action
is performed.

The process of mapping a message to a specific method at run-
time is known as dynamic dispatch. In many object-oriented lan-
guages, like C++, Delphi and C#, the concrete code that is
invoked by a virtual function call, depends on the type of the object
at runtime. As only one object determines which code is going to be
executed, they are known as single dispatch calls.

Because the transition to be executed and its corresponding ac-
tion depends on two parameters (state and event), single-dispatch
languages have no language features to implement state machines
directly.
5.2. Concept

The solution to this shortcoming is known as double-dispatch.
Generally explained, a double-dispatch is a mechanism that dis-
patches a virtual function call to different concrete functions
depending on the runtime types of two objects involved in the call
– in case of a state machine, these are the active state and the trig-
gering event.

Because there is no direct support for double-dispatch in single-
dispatch languages, we need to emulate the mechanism by code.
This is easily done in the following way, similar to ping-pong:
(Code snippets are in C++)

Step (1) At first, we must bring the ball into play: a method of
the state object is called with an event object as
parameter:

void State::dispatchEvent(Event ⁄event)
{

event->processFrom (this);
}

Step (2) The ball is then pushed to the opposite party, the event
class. Now, it is the event’s turn to push back the ball:
Provided, the type of the parameter event is of type
EvModeBtn, the previous call from State::dis-

patchEvent() results in the invocation of the
method:

void EvModeBtn::processFrom(State ⁄state)
{

state->processEvent (this);
}

Step (3) Provided, the type of the parameter state is of type
StateCooler, the previous call from EvMo-

deBtn::process-From() results in the invocation of
the method:

void StateCooler::processEvent(EvModeBtn ⁄event)
{

//perform a transition here
}

As a consequence, the resulting function call StateCool-

er::processEvent(EvModeBtn ⁄) depends on both the type of
the state object and the type of the event object. If the event
changes to an object of type EvSpeedBtn, a function named Stat-

eCooler::processEvent(EvSpeedBtn ⁄) is called. If the state
object changes from an instance of class StateCooler to an in-
stance of class StateHeater and the event object is of type Ev-

SpeedBtn, the resulting function call is StateHeater::

processEvent(EvSpeedBtn ⁄).
In order to use late binding (virtual function calls) on the state

object, the state class hierarchy needs a common base class. Same
applies to the event class hierarchy too. If default handlers in the

1730 V. Spinke / Information and Software Technology 55 (2013) 1726–1740
base class of the states are provided, is is not necessary to imple-
ment all possible pairs of state and event types, but only those, that
are really needed in the application. This reduces the amount of
code to write considerably.
5.3. Advantages

The double-dispatch is easy to implement and depends only on
two object-oriented mechanisms: inheritance and late binding.
These are available in all OO programming languages.

States and events are both objects and not only numbers. This
enables the user to adapt the classes to the specific needs of the
application, simply by sub-classing, without affecting the
mechanism.

Only those transitions, which are defined in the state machine
diagram need to be coded. All other combinations are handled by
the default handlers in the state base class.

There is no need to define states and events as contiguous num-
bers, as it is with the table approach. The state and event classes
can be reused in different contexts. If a context object is provided,
states and events do not need to contain any data and therefore
even the objects themselves can be reused if implemented with
the flyweight pattern (see Flyweight Pattern in [5]). The cost for
creation and deletion of the state and event objects is payed only
once at program initialization and is zero during run-time. This is
especially advantages in embedded systems with limited re-
sources, where memory management is often restricted.

There is no mapping required between events and object meth-
ods (and therefore no switch statement or search algorithm). Be-
cause of the default handlers in the base classes, the state
machine can handle all supported events, without any precautions.
In contrast to this, in a table approach, special care must be taken,
to limit the indexes for the table look-up to existing values. This is
especially important for C and C++ which do not have automatic
range checking by default.

Execution time is constant and independent of the number of
states and events. To find the concrete transition function, two
consecutive virtual function calls are performed, each of which
has a constant run-time. (Action execution is not taken into
account.)

States, events and transitions have a one-to-one mapping from
the state machine diagram to their implementation. This is impor-
tant in maintenance and debugging.

Because the transitions are made explicit as methods, it is even
feasible to reconstruct the state machine from the code.

Last, but not least, the code is readable and understandable for a
human reader.
5.4. Disadvantages

There must be a common base class for all states which defines
default handlers for each event in the system. Otherwise polymor-
phism is not possible and the code does not compile. As a result,
the base class State depends on all defined events. Adding a
new event, requires to add a handler in the State class as well,
but the necessary changes are small. Because State is a base class,
all dependent code has to be recompiled. As the number of events
is usually limited and known beforehand, this dependency is
uncritical.

In the other way around, the event class hierarchy is completely
independent of the state class hierarchy. Adding a new state does
not cause any changes to the event class hierarchy.
5.5. Main difference to other approaches

In contrast to most other solutions, the approach presented in
this paper, reifys both states and events as objects but not the tran-
sitions. Why is this rational?

Events are entities that are part of the problem domain. A reac-
tive system detects events and processes them e.g. by means of a
state-machine which determines the appropriate reaction to the
actual event. In an object-oriented design, it is only natural to mod-
el the events as well as the state-machine as objects. This leads to
the requirement, that the state-machine must provide an interface
that can handle these event-objects.

States are only internal entities of the state-machine, so it
seems not necessary to model them as objects. As a matter of fact,
the classical approaches like the switch/if-statements approach as
well as the state-table approach do not model the states as objects
as the state-pattern does. Nevertheless, a state typically models a
situation during which some (usually implicit) invariant condition
holds true. Because of this, it makes sense to model the states as
separate self-contained entities – in other words: objects – too.

The transitions are neither visible from outside the state ma-
chine nor are they relevant from an outside point of view. Only
the behavior of the state machine, which is the reaction to an
event, is essential. Therefore, it does not matter how these internal
elements are implemented. There are no apparent advantages to
model the transitions as objects. A reason that could justify to
implement the transitions as objects is the possibility to change
the behavior of the state machine at run-time similar to the Strat-
egy Pattern in [5]. By changing the behavior, a different state ma-
chine is being build which leads to the question why not to model
and build different state machines for each case and exchange the
state machine object rather than the transitions.

These considerations lead to the design as presented in this pa-
per. The use of the double-dispatch mechanism is a direct conse-
quence of the reification of both states and events because it
allows an easy mapping from the current state and the triggering
event to an action without artificial transformations.

6. Implementation

6.1. A brief example

To proof the usefulness of the proposed approach, a brief exam-
ple was implemented. The system models an air conditioner. It is
controlled by three buttons: Power, Mode and Speed. Pressing
the Power button starts the system to operate. There are two
modes of operation: heating and cooling. With the Mode button,
the user switches between these modes. The fan of the air condi-
tioner can be set to two speeds: low or high. With the Speed button
the user selects the speed of the fan. The Mode and the Speed but-
tons shall be disabled unless the air conditioner is operating. While
in operation, pressing the Power button stops the system. Pressing
the Power button again restarts the system in the same mode and
speed it was in, before being stopped.

The state machine diagram in Fig. 1 represents the control logic
of this air conditioner system. If pressed, the three buttons gener-
ate the events EvPowerBtn, EvModeBtn and EvSpeedBtn. The
controller reacts by calling one of the action functions Enable-

Buttons, CoolerOn, FanLow, etc.
The class AirConCtrl presents the whole state machine to the

application program. AirConCtrl encapsulates two states named
Stopped and Operating. The state Stopped is a simple state that
is also the initial state.

The state Operating is an orthogonal state with two regions. It
contains two sub state machines, named Mode and Speed, which
control the mode of the system and the speed of the fan respec-

Fig. 1. State machine for an air conditioner.

V. Spinke / Information and Software Technology 55 (2013) 1726–1740 1731
tively. They operate in parallel. The event EvModeBtn switches be-
tween the modes Heater and Cooler, whereas the event Ev-

SpeedBtn switches between the fan speeds Low or High.
The event EvOne was introduced for testing purposes only.

The example is similar to the one presented by Niaz and Tanaka
in [4]. It was chosen because it is uncomplicated and easy to under-
stand but includes some of the more advanced features like con-
current states and history. Unlike Niaz and Tanaka, the author of
this paper considers it best, to model the pre- and postconditions
of the states with entry and exit actions. The Operating state
e.g. requires the mode and speed buttons to be enabled. As a con-
sequence, the Operating state ensures that the buttons are en-
abled, by processing an entry action EnableButtons, which
enables the buttons. If the Cooler state is left, the cooler shall
be off in any case. So, it is the responsibility of the Cooler state
to define and process an exit action, which turns off the cooler.
The same principle applies to all other states. That is why the
example makes heavy use of entry and exit actions. Unfortunately,
we end up with an example that has no actions associated with
transitions any more. To show how they are implemented too, it
was decided to break the rule with respect to the Stopped state.
Because of educational purposes only, disabling the buttons is done
as an action associated with all transitions to the Stopped state.
No doubt, disabling the buttons in an entry handler of the Stopped
state, is a much better solution from an engineering perspective.

6.2. Basic structure

Fig. 2 shows the static structure of the implementation of the air
conditioner example from Fig. 1.

The basic element of the implementation is a state which is rep-
resented by a class named State. A State-object does not contain
any further elements, but can have entry- and exit-actions as-
signed to it, as well as internal transitions. State has a method
named dispatchEvent() that processes an incoming event.
In contrast to State, an object of class StateMachine is a state
that contains further elements: states or state machines and tran-
sitions between them. Only one of the inner states of a state ma-
chine can be active at a time. The attribute activeSubState

holds a reference/pointer to this currently active State-object. Be-
cause StateMachine is derived from State, the active sub-state
can be a simple state or a complex state machine. The hierarchy
of states in the state machine diagram is mapped into a tree of
State and StateMachine objects by means of the Composite Pat-
tern in [5]. The dispatchEvent()-method of class StateMa-

chine propagates the incoming event to its active sub-state. By
this, the event is dispatched recursively down the tree of states,
until it reaches a simple state, that does not have any further inner
elements. Because a StateMachine is a State, it can have entry-
and exit-actions assigned to it as well as internal transitions.

The concurrent nature of a state is implemented by the class
ParallelState. It holds a number of regions, which are refer-
ences/pointers to State-objects, that are active at the same time.
The sole purpose of ParallelState is to dispatch incoming
events to all of its regions. As ParallelState is also derived from
State, it can be part of the composite tree of states and have en-
try- and exit-actions as well as internal transitions.

The application specific state classes simply derive from one of
the general classes State, StateMachine or ParallelState and
add the application specific behavior.

The events of the system are modeled by a class named Event.
This serves as a superclass. The actual events, that are applied to a
State by the dispatchEvent() method, are all derived from this
superclass. They form a simple class hierarchy with no further
dependencies.

An important aspect of the design is that every level of the hier-
archy of states is independent of the other ones. Each state only
needs to know its ancestor. The ancestor of a state is the state that
contains this state. In other words: A state is a sub-state of its
ancestor. In addition to this, each StateMachine-object certainly
needs to know all of its sub-states. In case of the example shown in

AirConditionerpackage []

+transition(state : StateStopped, event : EvPowerBtn)
+transition(state : StateOperating, event : EvPowerBtn)

AirConCtrl

+entryOnFork1()
+transition(state : StateHeater, event : EvModeBtn)
+transition(state : StateCooler, event : EvModeBtn)

StateMode

+onExitAction()
+entryOnFork1()
+transition(state : StateHigh, event : EvSpeedBtn)
+transition(state : StateLow, event : EvSpeedBtn)

StateSpeed

+processEvent(event : EvPowerBtn)
+onEntryAction()
+entryOnFork1()

StateOperating

+dispatchEvent(event : Event)
+entry()
+exit()
+processEvent(event : EvDefault)
+processEvent(event : EvModeBtn)
+processEvent(event : EvSpeedBtn)
+processEvent(event : EvPowerBtn)

State

+processEvent(event : EvPowerBtn)

StateStopped

+onEntryAction()
+processEvent(event : EvSpeedBtn)

StateHigh

+onEntryAction()
+processEvent(event : EvSpeedBtn)

StateLow

+onEntryAction()
+onExitAction()
+processEvent(event : EvModeBtn)

StateCooler

+onEntryAction()
+onExitAction()
+processEvent(event : EvModeBtn)

StateHeater

+dispatchEvent(event : Event)
+entry()
+exit()

StateMachine

+dispatchEvent(event : Event)
+entry()
+exit()

ParallelState

+processFrom(state : State)

EvSpeedBtn

+processFrom(state : State)

EvPowerBtn

+processFrom(state : State)

EvModeBtn

+processFrom(state : State)

EvDefault

+processFrom(state : State)

Event

application specific classes

general classes

Double-Dispatch

Composite Pattern

<<use>>

<<use>> <<use>>

-Cooler -Low

-activeSubState

1

-Heater
-High

-regions

2..*

-Speed-Mode

-Stopped -Operating

Fig. 2. Static structure of the air conditioner example.

1732 V. Spinke / Information and Software Technology 55 (2013) 1726–1740
Fig. 1, the outermost StateMachine-object that represents the
whole state machine is named AirConCtrl. It aggregates state
Stopped and state Operating only. An event is simply passed
on to the next lower level of the hierarchy of states. A StateMa-

chine-object calling the dispatchEvent()-function of its
activeSubState does not know and does not need to know what
type the activeSubState is and if it has an inner life or not. So,
AirConCtrl simply passes the event to Operating e.g. That
Operating has a complicated inner structure is not the business
of AirConCtrl. It is the responsibility of Operating to ensure
that the event is processed accordingly.

This structure has some important implications. First, each state
can easily be extended. If there are only transitions within this ex-
tended state (as it is in the example with regard to Operating),
the ancestor is not affected at all. Second, transitions are methods
of a state and must always be performed by the least common
ancestor (LCA) of the source and target states involved in that tran-
sition. The LCA of two states is that state which contains both
states as sub-states. The double-dispatch results in a call of a meth-
od of the currently active state. It is now the responsibility of this
active state either to perform an internal transition itself or call a
method of his ancestor to perform a transition from that state if
one is defined. Third, because a StateMachine-object does not
know if a certain sub-state is a simple State or another StateMa-
chine, it must delegate the entry of a state to an appropriate en-
try-handler. The newly entered sub-state must handle the entry
according to his structure, e.g. enter its sub-state by an appropriate
entry-handler. In case of the example shown in Fig. 1, state Oper-
ating must provide an entry-handler to realize the fork, because
AirConCtrl does not know about Mode and Speed and therefore
cannot restore the previously active states.

The principle of delegating up and down the hierarchy of states
is fundamental to the approach presented in this paper. It enables
the user to hide the internals of the involved objects but also to ex-
tend the structure. A consequence of this is the possibility to put
parts of the state machine in different compilation units and mod-
ify them independently.

6.3. The code

The following subsections show the relevant parts of the code.

6.3.1. Events
At first, we need to define the event class hierarchy. The class

Event is the base class. We then derive a basic event from it, that
we need to implement the state machine: EvDefault. The appli-
cation specific events are derived in the same way in a separate file
(see Listing 1).

The implementation is straight forward and always the same
for all events (see Listing 2).

6.3.2. States and state machines
Next, we need to define the state class hierarchy. State ma-

chines and orthogonal states are states too. So, they are derived
from the base class State (see Listing 3 State.h).

The implementation is shown in Listing 4 State.cpp.
State.h and State.cpp give us some kind of ‘library’, which is

simply used in the application-specific code later.

Listing 1. Events.h.

Listing 2. Events.cpp.

Listing 3. State.h.

V. Spinke / Information and Software Technology 55 (2013) 1726–1740 1733
The heart of the code is the dispatchEvent() virtual function
of class StateMachine. It delegates an incoming event down the
hierarchy of nested states to the active sub-state of the state-ma-
chine. The dispatchEvent()-function always returns a boolean
value, which indicates, whether the parameter event has been pro-
cessed or not. Remember, that in C/C++ (as in other languages like
Delphi too) a boolean expression is evaluated from left to right.
This means, that the right part of the or-operator (k) is only evalu-
ated, if the left part has been evaluated to false. If the left part is
true instead, the result is always true and therefore the right part
does not need to be computed any more and in fact is not com-
puted at all. We use this feature, to consecutively dispatch the
event to the next level, if it has not been processed.

The most nested State object calls the function processFrom

which looks for transitions from that state, either internal or out-
going. If there is none defined, the default-handlers of class State
return false, indicating, that the event has not yet been processed.
Now, the call hierarchy returns to the dispatchEvent() virtual
function of class StateMachine which itself calls processFrom

looking for an internal or outgoing transition from that state.
At last, the next line looks for a default-transition to be per-

formed within the state machine. Because the event objects are de-
fined as flyweights (they have no attributes at all), they can safely
be reused. Instead of constantly creating and destroying new event
objects all the time, predefined event objects are used here, one for
each event class. This is especially advantages in micro-controller-
applications where dynamic memory management is restricted.
This can easily be changed, if an application requires an event to
carry additional information.

Derived states do not need to override the dispatchEvent()

virtual function (neither that of State nor that of StateMachine),
but simply provide processEvent-handlers for the particular
events they want to process.

There are three different ways to enter a composite state. They
are shown in Fig. 3.

A transition ending on the border of a composite state means
that the sub-state that is denoted as the initial state becomes the
active sub-state. This is implemented by the StateMa-

chine::entry() virtual function. At first it calls an onEntryAc-

tion()-handler if one is defined. The second step is to initialize
the activeSubState-attribute with the initial sub-state of the
state. At last, the entry-action of the newly set active sub-state is
invoked. This completes the entry-sequence.
A transition to a history state needs a special treatment. A sep-
arate entry-handler-function must be defined that handles this
case. The entry-handler first calls the onEntryAction()-handler
as always, then restores the activeSubState to its previous value
and finally enters the restored sub-state. The following snippet
shows the relevant code (see Listing 5):

Listing 4. State.cpp.

1734 V. Spinke / Information and Software Technology 55 (2013) 1726–1740
In order to do this, the exit-handler StateMachine::exit()

stores the activeSubState that is becoming inactive, because

the state is left, in an attribute. This enables the restor-

eShallowHistory() and the restoreDeepHistory() func-

Fig. 3. Ways to enter a composite state.

Listing 5. Operating.cpp.

V. Spinke / Information and Software Technology 55 (2013) 1726–1740 1735
tions to restore the previously active sub-state. With this strategy,
the implementation of history simply turns into an initialization
procedure of the active sub-state, which it naturally is.

A transition ending on a particular state is handled in the same
way. A special entry-function simply sets the sub-state becoming
active after the transition is executed like the previous code shown
restores the history state.

The method that implements the transition must choose the
appropriate entry-function according to the destination of the
transition.

As already described, there must be default handlers defined for
each event in the system, otherwise the polymorphism does not
work. This makes class State depend on all events, as is easily
seen in the class definition. Introducing a new event is simply done
by defining a class for the new event and adding one handler-func-
tion in the State class. Afterwards, all of the code needs to be
recompiled. The advantage is, that all state machines now support
the new event. It can be passed to any state machine. No special
care must be taken, to pass only those events to a state machine
that this particular state machine processes. If the state machine
does not define a reaction to this new event, nothing happens.
6.3.3. Application code
With this small ‘library’ presented above, it is easy to write

application code like in Listing 6:
How is a transition performed? Assume, that the state machine

in Fig. 1 is in state Cooler. An event EvModeBtn is processed by a
call to AirConCtrl::dispatchEvent(). AirConCtrl inherits
method dispatchEvent() from StateMachine which dis-
patches the event to Operating which in turn dispatches it to
the Cooler state object. Because Cooler is an atomic state, the
default dispatchEvent()-virtual function of class State per-
forms the double-dispatch, as described in Section 5.2. The flow
of control is also visualized in Fig. 2 by the dotted lines marked
with stereotype «use» The result is a call to StateCooler::pro-

cessEvent(EvModeBtn ⁄). This function initiates the transition
by calling a transition function of its ancestor state (the state one
level above in the state hierarchy) named StateMode::transi-
tion(StateCooler ⁄, EvModeBtn ⁄). As shown in Listing 6, this
transition function calls the exit-handler of its active sub-state
(which is still state Cooler), then performs an action, if one is de-
fined (there is none in the example), changes its active sub-state to
a new sate (which is state Heater in the example) and then per-
forms an entry action on the new active sub-state. Because the
event has now been fully processed, true is returned, which pre-
vents further processing of the event, as described earlier.

The code in Listing 6 also gives examples of how to handle en-
try, exit and initialization events. The given code should be self
explanatory. The rest of the state machine shown in Fig. 1 is imple-
mented in the same way.

Listing 7 gives an example of how to program a transition with
an action associated that is controlled by a guard. The pattern is the
same as before. Instead of the comment in the previous listing, the
action EnableButtons() is called. The transition is executed only
if the function TempIsNormal() that acts as a guard returns true.
After the transition was executed, the transition handler returns
true to indicate, that the event EvPowerBtn has been processed.
Otherwise it must return false to enable other states in the hierar-
chy to process the event.

7. Comparison

7.1. Runtime

7.1.1. Test programs
To compare the run-times of the different approaches, a couple

of test programs were written as described in Table 1. Each test
program implements the state machine described in Fig. 1.

The nested switch/if statements approach, as well as the table
approach are represented by visualSTATE generated code. The state
pattern approach is represented by the approach presented by Niaz
and Tanaka [4]. Their Java code was converted to C++ and modified
as described in Section 4.3. Language specific approaches are rep-
resented by an implementation with The Boost C++ Statechart Li-
brary. The double-dispatch approach as presented in this paper
comes in three flavors. The first one is the version shown by the
code examples in this paper. The second one combines the dou-
ble-dispatch with delegation similar to the state pattern. The third
version is optimized like the approach presented by Niaz and Tana-
ka. It implements only the necessary functionality directly in the
appropriate handlers, as a code generator would do it.

7.1.2. Test cases
Each test program performs three tests as described in Table 2.

Test A generates randomly 1000 events and processes them 1000
times. All four events defined in the example in Fig. 1 have equal

Listing 6. Operating.cpp.

Listing 7. AirConCtrl.cpp.

1736 V. Spinke / Information and Software Technology 55 (2013) 1726–1740
probability. Test A is to test the over-all performance of the differ-
ent algorithms. Test B repeats events with no transition in state
Stopped, while Test C does the same in state Operating. Both
tests are to check the effect of the number of nested states on
the performance of the algorithms.

Each test program processes one million events. All test pro-
grams have empty action handlers. The action handler functions
simply return immediately without doing anything. As a result,
only the performance of the control algorithms are measured.
7.1.3. Results
To carry out the measurements, several compilers and compiler

settings were tried on different operating systems. The actual run-
times and program sizes fluctuate considerably depending on the
compiler and its option settings. As this is not a compiler compar-
ison, we do not go into details here, but emphasize that the influ-
ence of the compiler can outweigh the influence of the algorithm.
GCC results are reported, because this is the most widely accessible
reference platform.

Furthermore, on a preemptive multi-tasking operating system,
it is not possible to measure the runtime of a program accurately.
That is why it is useless to claim something like ‘‘our code is 58.53%
more efficient than an other one’’ as other papers do. The runtimes
stated in the tables may fluctuate up to about 10% from pass to
pass. The interesting point for this paper is the relative perfor-
mance of the tested algorithms against each other, which is stable,
not their absolute performance.

Table 3 shows the results on Linux compiled with GNU CC 4.4.3
with options -Os (Optimize for size) and -fno-exceptions and -fno-
rtti. The measuring was performed on a PC equipped with a
1.8 GHz AMD Athlon processor.

It seems that the double-dispatch is a little bit slow compared
to other approaches. This is of no wonder. Remember, that the
state hierarchy forms a tree. The code shown in this paper per-
forms a double-dispatch on each level of that tree of states. This
is obviously more time consuming than e.g. the state pattern that
simply delegates the event down the hierarchy. We come back to
this point later in this paper.

It is interesting that the table approach shows a relatively poor
performance. This is due to the run-time system necessary to pro-
cess the tables. The results comply with articles by IAR. The table
approach has advantages, if the state machine gets large. In this
case, the code necessary to process the tables keeps the same,
while the tables grow in size only moderately. This may result in
smaller code sizes compared to other approaches. According to
IAR, the nested switch/if-statements approach is usually faster
than the table approach. The results shown in this paper confirm
this.

Each algorithm has its strength and weaknesses. It is usually
easy to find cases, in which a given algorithm performs superb
and others in which it performs weak. The double-dispatch ap-
proach proposed in this paper as well as the State Pattern based
approach proposed by Niaz and Tanaka [4] are recursive algo-
rithms, that are susceptible to the number of nested states. Tests
B and C clearly indicate this. The performance of the State Pattern
approach as well as the double-dispatch approach is excellent
compared to the nested switch/if statements approach, if the
nesting depth is low (one nesting level in Test B). The run-times
increase noticeably, if the nesting depth becomes higher (three
levels in Test C), while the run-time of the nested switch/if state-
ments approach as well as the table-approach keeps nearly
constant.

Table 1
Test programs.

Name Description

DDA double-dispatch approach as presented in this paper
DDD double-dispatch approach combined with delegation
DDO double-dispatch approach optimized version
VST visualSTATE version 6.1 generated code: table approach
VSR visualSTATE version 6.1 generated code: readable approach

(nested switch/if statements)
TAN State-Pattern approach as presented by Niaz and Tanaka converted

from Java to C++
BST implementation with The Boost C++ Libraries version 1.50

Table 2
Test cases.

Name Description

Test A Generate randomly 1000 events and process them 1000 times
(all events have the same probability)

Test B Events with no transition in state Stopped
(repeat sequence EvModeBtn, EvSpeedBtn)

Test C Event with no transition in state Operating
(send event EvOne)

Each test processes exactly one million events

Table 3
Runtimes on Linux DDA.

Test A Test B Test C

DDA 173 ms 100% 60 ms 100% 171 ms 100%
VST 256 ms 148% 136 ms 227% 125 ms 73%
VSR 122 ms 71% 106 ms 177% 101 ms 59%
TAN 84 ms 49% 25 ms 42% 46 ms 27%
BST 778 ms 450% 163 ms 272% 334 ms 195%

Table 4
Runtimes on Linux DDD.

Test A Test B Test C

DDD 150 ms 100% 48 ms 100% 134 ms 100%
VST 256 ms 171% 136 ms 283% 125 ms 93%
VSR 122 ms 81% 106 ms 221% 92 ms 69%
TAN 84 ms 56% 25 ms 52% 46 ms 34%
BST 778 ms 519% 163 ms 340% 332 ms 248%

Table 5
Runtimes on Linux DDO.

Test A Test B Test C

DDO 74 ms 100% 27 ms 100% 50 ms 100%
VST 256 ms 346% 137 ms 507% 125 ms 250%
VSR 122 ms 165% 105 ms 393% 92 ms 184%
TAN 84 ms 114% 25 ms 93% 46 ms 92%
BST 773 ms 1045% 163 ms 604% 328 ms 656%

V. Spinke / Information and Software Technology 55 (2013) 1726–1740 1737
The poor results of the Boost Statechart Library certainly speak
for themselves.

The previous results raise the question why not to combine the
double-dispatch with delegation like in the state pattern? The sec-
ond double-dispatch implementation DDD implements this. It per-
forms a double-dispatch at the highest level and then delegates the
event down the hierarchy of states. To do this, it is necessary to
implement additional delegation functions which make the code
more complex. Nevertheless, the results in Table 4 show an
improvement compared to the previous results.

The comparison is still misleading because the double-dispatch
approach is the only one that uses objects as events, not numbers
as the other approaches (except Boost) do. The comparison of two
numbers is always faster than any thing else. In addition to this, all
test programs except DDA, DDD and BST are highly optimized ver-
sions. It is practically impossible to change these state machines
without the use of the code generator that produced the test pro-
grams. So, the question is what happens, if the double-dispatch ap-
proach is implemented in the same highly optimized way as the
other three test programs VST, VSR and TAN? The result is shown
in Table 5.

The performance boost is considerable. The implementation
DDO is comparable with those of VST, VSR and TAN. The ‘library’
shown in the listings above was moved into the different handlers
and stripped to the minimal functionality that is necessary to
implement the state machine diagram in Fig. 1. As a result, the con-
venience and ease of use that the small library presented above
introduced is gone. Even for small modifications of the state ma-
chine, a lot of code needs to be changed, as it is for the other ap-
proaches too.

Table 6 shows the results on an ARM7 target, compiled with IAR
Embedded Workbench 5.20 with optimization ‘‘high size’’ in Pro-
cessor mode ‘‘ARM’’. On the ARM7-target, best results are achieved,
when optimization ‘‘high size’’ in ARM mode is used. This option
results in fast and compact code. The measuring was performed
on a NXP LPC2468 micro-controller running at 48 MHz.

The results are similar to those on Linux and show, that the pro-
posed approach is applicable on small micro-controllers too.
7.2. Code size

Table 7 shows the code size of each test program in bytes.
The test programs VSR and VST are mainly pure C code. It seems

that the GNU C-Compiler is capable of optimizing this much better
than other compilers can do. Tests on Windows with Visual C++
showed a code size that is roughly twice as large as that of the
GNU compiler. The proportions for the C++-based test programs
are similar to each other between the compilers.

As already seen before, the Boost approach falls out of the or-
dinary also with regard to the code size. It compiles to up to five
times larger code than the proposed approach. Size matters, espe-
cially on micro-controllers, where memory is usually very limited.
This is also true for applications running on more powerful embed-
ded microprocessors with an underlying operating system like
Windows CE or Embedded Linux.

The error message reported by the IAR cross compiler (‘‘Embed-
ded C++ does not support run-time type information.’’) clearly re-
minds us, that a template library is not intended for use on small
micro-controllers.

As a result, we can document, that the code size for the ap-
proach presented in this paper is slightly bigger than that for tra-
ditional approaches, but small enough that it is still useful.
7.3. Maintainability

The nested switch/if-statements approach does not scale well –
not only with regard to runtime, but especially related to mainte-
nance. In larger state machines, it gets difficult to find the right
place to do modifications.

Generating the source code seems to be an elegant way out of
this difficulty, but then all modifications must be made using the
tool. This procedure is inconvenient and sometimes impractical.
Without the tool, it gets difficult to change the source code. Even

Table 6
Runtimes on ARM7.

Test A Test B Test C

DDA 10988 ms 100% 3802 ms 100% 13896 ms 100%
DDD 10091 ms 92% 3521 ms 93% 11021 ms 79%
DDO 4674 ms 43% 1667 ms 44% 4104 ms 30%
VSR 10238 ms 93% 8291 ms 218% 8083 ms 58%
VST 24780 ms 226% 13458 ms 354% 11937 ms 86%
TAN 5177 ms 47% 1989 ms 52% 4083 ms 29%

Table 7
Size of each test program in Bytes.

PCLinuxa ARM7b

DDA 30 098 100% 24560 100%
DDD 30 308 101% 25404 103%
DDO 24 698 82% 23052 94%
VST 15 667 52% 20537 84%
VSR 15 437 51% 20541 84%
TAN 23 815 79% 21676 88%
BSTc 151 617 504% –d –

a Compiled with GNU CC 4.4.3 with options -Os (Optimize for size) and -fno-
exceptions and -fno-rtti.

b Compiled with IAR Embedded Workbench 5.20 with optimization ‘‘high size’’ in
Processor mode ‘‘ARM’’.

c Requires RTTI and Exceptions turned on to compile.
d IAR Embedded Workbench 5.20 reported: Error[Pe878]: Embedded C++ does

not support run-time type information.

1738 V. Spinke / Information and Software Technology 55 (2013) 1726–1740
worse, manual changes are lost, if the code is regenerated later.
Round-trip engineering is usually not provided by the tools.

Furthermore, the nested switch/if-statements approach re-
quires the source code of the state machine to be completely in
one file. This is a disadvantage, because it is easy to lose track of
things in large files.

The state-event-table approach is more easy to handle with re-
gard to manual changes. With proper names of the handler-func-
tions (e.g. a combination of the state and the event, the function
is handling), it is clear where to make modifications. Nevertheless,
if things grow, it is also very easy to be off the track in large tables.

The state pattern is quite verbose – it needs a lot of code to
write and a lot of classes to handle. The introduction of a new ele-
ment (a new state, a new event or a new transition) may result in
many small changes at many different places. This can be handled
with some discipline, but is not really maintenance friendly. If the
state machine grows, this makes the state pattern cumbersome
too.

The double-dispatch approach presented in this paper, makes it
easy to split up the source code of a large state-machine into sev-
eral files. The approach itself, does not impose any restrictions on
the organization of the source code, as long as the compiler is able
to translate a compilation unit. If wanted, each state and event
class could even be placed in a separate file.

It is easy to develop parts of a hierarchical state machine inde-
pendently and reuse them in a different context. Because the states
are objects, it is irrelevant for an outer state machine using them,
what happens inside. Each state provides a dispatchEvent()-
method. What happens behind this interface, is the sole responsi-
bility of the state object. If it is a state machine, it delegates the
event to its active sub state. If it is a parallel state, it delegates
the event to its regions. If it is an atomic state, it initiates the dou-
ble-dispatch mechanism to look for a transition to perform. In the
air-conditioner example, the top-level state machine does not
know and does not need to know at all that the state Operating

has an inner life.
Because the events are implemented as classes, it is easy to
group them by defining super classes. Transitions on a group of
events, need only be coded once, simply by defining a transition
processing an event of the super class. As as a result, it is not nec-
essary to define separate transitions for every single subclass. To
illustrate this, consider a calculator as an example. There are 10
events defined, one for each digit. A transition shall be performed
on pressing any of the digits. Instead of defining ten separate tran-
sitions for every single digit event, simply define a superclass for all
digits and then implement a transition processing this superclass
event. Because any subclass is also of the type of its superclass,
the transition is performed irrespective of which digit is pressed.

Another advantage of using classes to represent events is, that
events can hold additional information (like a time stamp e.g. or
a temperature in the air conditioner example). The user is free to
use all possibilities of object-orientation. To add additional infor-
mation to an event is not possible in other approaches (nested
switch-statements, state-event-table), because events are repre-
sented there by arbitrary insignificant numbers.

Stepping through the code in a debug session, reveals that it is
easy to navigate through code that uses the double-dispatch ap-
proach. If meaningful names for states and events are used, the
programmer always knows where he is and how the program
got there.

This is due to the regular structure of the approach, which also
supports maintenance. Although adding a new element like a new
transition may require changes at more than one place, the neces-
sary changes are very local. They usually affect only the state and
its surrounding state machine, but not the whole class hierarchy.
7.4. Portability – use of special language features

It was one of the main aims of this work, to keep the approach
independent of special language features. Special language fea-
tures, like templates and runtime type information in C++ or reflec-
tion in Java, are usually not portable to other programing
languages in a consistent way. A good example for this, is the ap-
proach of Samek presented in his first book [12] which is based
on C++. It is a mixture of objects, inheritance and switch-state-
ments. The implementation relies very much on specific language
features of C++ like function pointers and type-casts. The author of
this paper tried to port Sameks approach to Delphi but gave up be-
cause of constant nagging about type errors by the compiler.

Special language features also tend to be extremely expensive.
Palsberg and Jay [13] generalized the visitor pattern to a ‘‘Walk-
about class’’, using the reflection capabilities of Java. The perfor-
mance penalty is of the order of 300, compared to manual
implementations.

Similar results are seen for C++-templates. Already the compila-
tion process needs much longer than approaches omitting tem-
plates. The run times of the test programs implemented with the
Boost Statechart Library were always the longest and up to 36
times higher than those of other approaches. Embedded C++, a sub-
set of C++ intended for programming small micro-controllers, does
not support templates at all. Furthermore, the template syntax is
hard to read and debug.

A special disadvantage of the Boost Statechart Library is that it
is not possible to group events by simply defining super classes, as
the documentation explains. In a general approach, there is no rea-
son, why this should not be possible, because factoring out a super
class, is a common and natural process in object-oriented software
development. In addition to this, the sequence of exit actions is not
UML compliant. The Boost Statechart Library processes the exit
handlers top-down the state hierarchy instead of in bottom-up
order.

V. Spinke / Information and Software Technology 55 (2013) 1726–1740 1739
A useful state machine pattern is independent of a specific pro-
gramming language and can therefore be implemented with many
different target languages. This is the case for all of the traditional
approaches mentioned at the beginning of this paper. The ap-
proach proposed here follows this deliberate tradition.

7.5. How to implement features not described yet

In Listing 7 we showed how to implement guards. This section
briefly describes how to implement other more advances features
of the UML that are missing yet.

A Join is easy to realize similar to a guard. Instead of an external
condition, the if- statement checks if some states are active before
the transition is performed. Final states are easy to realize as their
behavior is similar to simple states. Do-activities of states can be
emulated by entry and exit actions. Junction-points and dynamic
choice points can be implemented with arbitrary complex if-state-
ments within the transition functions that decide on the actions to
perform and the target state. Deferred events can be implemented
with an external message queue. In many cases, it is also possible
to avoid deferred events by using orthogonal states. The imple-
mentation of a message queue as well as the use of threads is
out of the scope of this paper.

7.6. Element-based overview of state machine elements

Domínguez et al. provide an element-based comparison with
all of the approaches examined by them. They write: ‘‘The goal
of this comparison is to analyze which state machine elements
are considered by each proposal and the strategy followed in or-
der to implement these elements as code structures.’’ This sec-
tion shows how the approach proposed in this paper fits in
the pattern system by Domínguez et al. (see Table 10 in [11]).
By this, it indicates the commonalities and differences to the
other approaches.

The approach presented in this paper, implements the state ma-
chine elements in the following way:

Context Class. Class.
Current State. Attribute holding a reference to a state object.
Simple State. The proposed approach uses a specific class for
each state in the state machine specification. It derives these
state classes from a base class, but the bases-class is not and
cannot be purely abstract. The state machine is composed by
aggregation, not by inheritance.
State transition process. Double-dispatch.
(It is noteworthy that the only two mechanisms found by Domí-
nguez et al. in 28 proposals described in 53 papers are the
switch-statement and the state-table structure.)
Events. A base class for all events plus a concrete sub-class for
each event in the system.
Guards. If-statement in the transition handler method, that
decides, if the transition is to be executed or not.
Actions. An action class with a method for each action (A3).
Composite State Simple. A state class that aggregates sub-
states. Events are delegated to the active sub-state.
Composite State Orthogonal. A state class that aggregates sub-
states. Events are delegated to all sub-states.
Fork. Normal transition plus special entry action that activates
and enters more than one sub-state.
Join. If-statement in the transition handler method.
(Implemented like a guard that checks if the state machine is in
the states where the join originates from.)
Choice. If-statements in the transition handler method that
determine the target state. Alternative: State with outgoing
default transitions controlled by guards.
History. Normal transition plus special entry action that has to
restore the history states from an attribute. Shallow and deep
history are supported.
Activities. A specific method in the corresponding state class
(A3). Do-activities can be emulated by entry- and exit-actions.

A default initialization transition may have an action associated
with it. This is not possible with the Boost Statechart Library. A
composite state can use default initialization, deep and shallow
history simultaneously in accordance with the UML semantics.

In addition to the table presented by Domínguez et al. (Table 10
in [11]), the element-based overview demonstrates, that the ap-
proach proposed in this paper shares some minor commonalities
with other approaches but has some major differences in its struc-
ture and the way it operates, so that it can be considered as sub-
stantially different to the approaches presented in the
comparison by Domínguez et al.
8. Conclusion and future work

An object-oriented approach for state machine implementation
has been presented. States, as well as events are modeled by clas-
ses. Transitions are methods of the state classes. Because the actual
transition to perform depends on the type of two objects (active
state and triggering event), the double-dispatch mechanism is used
for the mapping.

The results proof that this approach is a useful way to imple-
ment state machines. It is easy to code, easy to understand and
therefore easy to maintain and debug. Furthermore, it executes
fast, compared to other popular approaches. Because of its pure ob-
ject-oriented nature, the presented approach can be easily reused
and extended.

The fact, that this approach relies only on inheritance and late
binding, makes it suitable for use with any object-oriented lan-
guage. To verify this, examples were coded in C++ and Delphi. They
all worked as expected.

As it is not only a variation or combination of existing ap-
proaches, but has unique characteristics in its structure and the
way it operates, the author concludes that applying the double-dis-
patch technique to implementing state machines, can be consid-
ered as a suitable approach, that should gain more attention as a
fourth solution in addition to the three traditional approaches.

It is notable that authors proposing an approach for state ma-
chine implementation usually omit information on how their algo-
rithm scales. As a future work, the author of this paper plans to
further examine how the algorithms scale with regard to run-time
and code size if the number of states, transitions and events get
large.

Acknowledgment

Thanks to Dr. Iftikhar Azim Niaz for providing the Java source
code of the example in his paper [4].

References

[1] D. Harel, Statecharts: a visual formalism for complex systems, Science of
Computer Programming 8 (1987) 231–274. <http://
www.wisdom.weizmann.
ac.il/�dharel/SCANNED.PAPERS/Statecharts.pdf>.

[2] Unified Modeling Language Specification (UML), Object Management Group,
2012. <http://www.omg.org> (last visited 14.08.12).

[3] visualSTATE – A Set of State Machine Design, Test and Implementation Tools,
IAR Systems AB, Version 6.1. <http://www.iar.com>.

[4] I.A. Niaz, J. Tanaka, An object-oriented approach to generate java code from
UML statecharts, International Journal of Computer and Information Science
(IJCIS) 6 (2) (2005) 83–98. <http://www.iplab.cs.tsukuba.ac.jp/paper/journal/
niaz_IJCIS2005.pdf>.

http://www.wisdom.weizmann.ac.il/~dharel/SCANNED.PAPERS/Statecharts.pdf
http://www.wisdom.weizmann.ac.il/~dharel/SCANNED.PAPERS/Statecharts.pdf
http://www.wisdom.weizmann.ac.il/~dharel/SCANNED.PAPERS/Statecharts.pdf
http://www.wisdom.weizmann.ac.il/~dharel/SCANNED.PAPERS/Statecharts.pdf
http://www.omg.org
http://www.iar.com
http://www.iplab.cs.tsukuba.ac.jp/paper/journal/niaz_IJCIS2005.pdf
http://www.iplab.cs.tsukuba.ac.jp/paper/journal/niaz_IJCIS2005.pdf

1740 V. Spinke / Information and Software Technology 55 (2013) 1726–1740
[5] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995. ISBN 0-201-
63361-2.

[6] Boost C++ Libraries, Version 1.50. <http://www.boost.org>.
[7] J. van Gurp, J. Bosch, On the implementation of finite state machines, in:

Proceedings of the IASTED International Conference, 3rd Annual IASTED
International Conference Software Engineering and Applications, Scottsdale,
Arizona, USA, 1999.

[8] S.M. Yacoub, H.H. Ammar, Finite state machine patterns, in: Proceedings of
Third European Conference on Pattern Languages of Programming and
Computing, EuroPLoP’98, Bad Irsee, Germany, 1998.

[9] S.M. Yacoub, H.H. Ammar, A pattern language of statecharts, in: Proceedings
of Fifth Annual Conference on the Pattern Languages of Programs, PLoP’98,
Allerton Park, Illinois, USA, 1998b.

[10] Adamczyk, The anthology of the finite state machine design patterns, in:
Proceedings of the Pattern Languages of Programs Conference (PLoP), 2003.

[11] E. Domı´ nguez, B. Pérez, A.L. Rubio, M.A. Zapata, A systematic review of code
generation proposals from state machine specifications, Information and
Software Technology 54 (10) (2012) 1045–1066. http://dx.doi.org/10.1016/
j.infsof.2012.04.008. ISSN 0950-5849.

[12] M. Samek, Practical Statecharts in C/C++. Quantum Programming for
Embedded Systems, CMP Books, 2002. ISBN 1-57820-110-1.

[13] J. Palsberg, C.B. Jay, The essence of the visitor pattern, in: Proceedings. The
Twenty-Second Annual International Computer Software and Applications
Conference, 1998. COMPSAC ’98., 1998, http://dx.doi.org/10.1109/
CMPSAC.1998.716629.

[14] M. Samek, Practical Statecharts in C/C++, Second Edition. Event-Driven
Programming for Embedded Systems, Newnes – An Imprint of Elsevier,
2009. ISBN 978-0-7506-8706-5.

[15] F. Chauvel, J.-M. Jézéquel, Code generation from UML models with semantic
variation points, in: Proceedings of MODELS/UML’2005, Springer, Montego,
2005.

[16] R.C. Martin, Acyclic Visitor, Object Mentor, 1996. <http://www.objectmentor.
com/resources/articles/acv.pdf>.

http://www.boost.org
http://dx.doi.org/10.1016/j.infsof.2012.04.008
http://dx.doi.org/10.1016/j.infsof.2012.04.008
http://dx.doi.org/10.1109/CMPSAC.1998.716629
http://dx.doi.org/10.1109/CMPSAC.1998.716629
http://www.objectmentor.com/resources/articles/acv.pdf
http://www.objectmentor.com/resources/articles/acv.pdf

	An object-oriented implementation of concurrent and hierarchical state machines
	1 Introduction
	2 Traditional approaches
	2.1 Nested switch/if statements
	2.2 State-event-table
	2.3 State pattern

	3 Requirements on an alternative approach
	4 Related work
	4.1 Tools
	4.2 Domínguez et al.
	4.3 Niaz and Tanaka
	4.4 Chauvel et al.
	4.5 The Boost Statechart Library

	5 The double-dispatch approach
	5.1 Key problem
	5.2 Concept
	5.3 Advantages
	5.4 Disadvantages
	5.5 Main difference to other approaches

	6 Implementation
	6.1 A brief example
	6.2 Basic structure
	6.3 The code
	6.3.1 Events
	6.3.2 States and state machines
	6.3.3 Application code

	7 Comparison
	7.1 Runtime
	7.1.1 Test programs
	7.1.2 Test cases
	7.1.3 Results

	7.2 Code size
	7.3 Maintainability
	7.4 Portability – use of special language features
	7.5 How to implement features not described yet
	7.6 Element-based overview of state machine elements

	8 Conclusion and future work
	Acknowledgment
	References

